Embeddings of Schur functions into types B/C/D

نویسنده

  • Michael Kleber
چکیده

We consider the problem of embedding the semi-ring of Schur-positive symmetric polynomials into its analogue for the classical types B/C/D. If we preserve highest weights and add the additional Lie-theoretic parity assumption that the weights in images of Schur functions lie in a single translate of the root lattice, there are exactly two solutions. These naturally extend the Kirillov–Reshetikhin decompositions of representations of symplectic and orthogonal quantum affine algebras Uq(ĝ) (some still conjectural, some recently proven).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE ROLE OF QUARK POLARIZATION IN HEAVY QUARK FRAGMENTATION

We calculate the exact fragmentation functions for c and b quark fragmentation taking into account the spin orientation of the initial heavy quark in the form of analytical and rather simple expressions. Our calculations show that spin orientation may have an important effect on the fragmentation spectrum. This effect is more striking in the cases of c ?D, D*; c? ? , ? , and ?B , B *.

متن کامل

Schur Functions and Orthogonal Polynomials on the Unit Circle

We apply a theorem of Geronimus to derive some new formulas connecting Schur functions with orthogonal polynomials on the unit circle. The applications include the description of the associated measures and a short proof of Boyd’s result about Schur functions. We also give a simple proof for the above mentioned theorem of Geronimus. 1. Schur functions In what follows we adopt the following nota...

متن کامل

On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

متن کامل

Vexillary Elements in the Hyperoctahedral Group

In analogy with the symmetric group, we define the vexillary elements in the hyperoctahedral group to be those for which the Stanley symmetric function is a single Schur Q-function. We show that the vexillary elements can be again determined by pattern avoidance conditions. These results can be extended to include the root systems of types A, B, C , and D. Finally, we give an algorithm for mult...

متن کامل

Reflections on Schur-cohn Matrices and Jury-marden Tables and Classification of Related Unit Circle Zero Location Criteria*

We use the so-called reflection coefficients (RCs) to examine, review, and classify the Schur-Cohn and Marden-Jury (SCMJ) class of tests for determining the zero location of a discrete-time system polynomial with respect to the unit circle. These parameters are taken as a platform to propose a partition of the SCMJ class into four useful types of schemes. The four types differ in the sequence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008